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Proofs of Statements

We use ∂ to denote the derivative operator of a single variable function, ∂x to denote the partial derivative

operator of a multi-variable function with respect to variable x, and 1{·} to denote the indicator function.

For any multivariate continuously differentiable function f(x1, x2, · · · , xn) and x̃ := (x̃1, x̃2, · · · , x̃n) in f(·)’s

domain, ∀i, we use ∂xi
f(x̃1, x̃2, · · · , x̃n) to denote ∂xi

f(x1, x2, · · · , xn)|x=x̃. The following lemma is used

throughout our proof.

Lemma 2. Let Fi(z,Z) be a continuously differentiable and jointly concave function in (z,Z) for i= 1,2,

where z ∈ [z, z̄] (z and z̄ might be infinite) and Z ∈R
n. For i= 1,2, let (zi, Zi) := argmax(z,Z)Fi(z,Z) be the

optimizers of Fi(·, ·). If z1 < z2, we have: ∂zF1(z1, Z1)≤ ∂zF2(z2, Z2).

Proof: z1 < z2, so z ≤ z1 < z2 ≤ z̄. Hence, ∂zF1(z1, Z1)

{

= 0 if z1 > z,

≤ 0 if z1 = z;
and ∂zF2(z2, Z2)

{

= 0 if z2 < z̄,

≥ 0 if z2 = z̄,
i.e., ∂zF1(z1, Z1)≤ 0≤ ∂zF2(z2, Z2). Q.E.D.

Proof of Lemma 1: We prove parts (a) - (c) together, using backward induction.

We first show, by backward induction, that if the normalized value function, Vt−1(It−1|ct−1)− ct−1It−1, is

concavely decreasing in It−1 for any ct−1, we have Ht(y|ct) is concavely decreasing, Jt(xt, qt, dt|ct) is jointly

concave, and Vt(It|ct)− ctIt is concavely decreasing for any given ct. It is clear that V0(I0|c0)− c0I0 =−c0I0

is concavely decreasing for any c0, so the initial condition is satisfied. Moreover, it’s clear from the continuous

distribution of ǫt that L(·) is continuously differentiable and concavely decreasing.

For any realization of ǫt and ξt, ht(y|ǫt, ξt) := α[Vt−1(y−ǫt|st(ct, ξt))−st(ct, ξt)(y−ǫt)] is concavely decreas-

ing in y since Vt−1(It−1|ct−1)− ct−1It−1 is concavely decreasing for any ct−1. Because concavity is preserved

under expectation, Ht(y|ct) =Eǫt,ξt{ht(y|ǫt, ξt)} is also concavely decreasing in y for any ct.

For any fixed ct, R(dt|ct) = (p(dt) − b − αµt(ct))dt = R(dt) − (b + αµt(ct))dt is strictly concave in dt.

(b− ct +αµt(ct))xt and (αµt(ct)− γct)qt are linear and, thus, concave in xt and qt, respectively. Since L(·)

and Ht(·|ct) is concave for any given ct, L(xt − dt) and Ht(xt + qt − dt|ct) are jointly concave in (xt, dt) and

(xt, qt, dt), respectively. Therefore,

Jt(xt, qt, dt|ct) =R(dt|ct)+ (b− ct +αµt(ct))xt +(αµt(ct)− γct)qt +L(xt − dt)+Ht(xt + qt − dt|ct)

is jointly concave in (xt, qt, dt) for any ct. Concavity is preserved under maximization, so Vt(It|ct) is also

concave in It. Suppose I1 > I2, F (I1)⊂ F (I2), so we have

Vt(I1|ct)− ctI1 = max
(xt,qt,dt)∈F (I1)

Jt(xt, qt, dt|ct)≤ max
(xt,qt,dt)∈F (I2)

Jt(xt, qt, dt|ct) = Vt(I2|ct)− ctI2,

i.e., Vt(It|ct)− ctIt is concavely decreasing.
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Next, we show that if Vt−1(It−1|ct−1) is continuously differentiable in It−1 for any ct−1, Jt(xt, qt, dt|ct) and

Vt(It|ct) are continuously differentiable for any ct. For t=0, V0(I0|c0) = 0 is continuously differentiable for any

c0. To show the continuous differentiability of Jt(xt, qt, dt|ct) for any ct, since R(dt|ct)+(b− ct+αµt(ct))xt+

(αµt(ct)− γct)qt +L(xt − dt) is continuously differentiable in (xt, qt, dt) for any ct, it suffices to prove that

Ht(y|ct) is continuously differentiable for any ct. Since ǫt is continuous and Vt−1(It−1|ct−1) is continuously

differentiable for any ct−1, Eǫt{ht(y|ǫt, ξt)|ξt} is continuously differentiable in y and its derivative is given by:

∂yEǫt{ht(y|ǫt, ξt)|ξt}=Eǫt{α[∂It−1
Vt−1(y− ǫt|st(ct, ξt))−st(ct, ξt)(y− ǫt)]|ξt}, where the exchange of differen-

tiation and expectation is easily justified using the canonical argument (See, e.g., Theorem A.5.1 of Durrett

(2010), the condition of which can be easily checked observing the continuity of ∂It−1
Vt−1(It−1|st(ct, ξt)) and

that the distribution of ǫt is continuous.). Apply the same exchangeability of differentiation and expectation

argument, we have, given any ct, Ht(y|ct) is continuously differentiable and its derivative is given by

∂yHt(y|ct) = ∂yEǫt,ξt{ht(y|ǫt, ξt)}=Eξt{∂yEǫt{ht(y|ǫt, ξt)|ξt}}=Eǫt,ξt{α[∂It−1
Vt−1(y−ǫt|st(ct, ξt))−st(ct, ξt)(y−ǫt)]}.

Hence, Jt(xt, qt, dt|ct) is concave and continuously differentiable for any ct. By the envelope theorem,

Vt(It|ct) = ctIt +max(xt,qt,dt)∈F (It) Jt(xt, qt, dt|ct) is continuously differentiable in It.

It remains to show the finiteness of Vt(It|ct). Note that Vt(It|ct)≤ (
∑t

i=1 α
i−1)p̄d̄ and is, thus, uniformly

bounded from above by (
∑T

t=1 α
t−1)p̄d̄. Hence, all statements in Lemma 1 hold. Q.E.D.

Proof of Theorem 1: Parts (a) - (b) follow directly from the joint concavity of Jt(·, ·, ·|ct).

Now we show part (d). The continuity of x∗
t (It, ct), q

∗
t (It, ct), and d∗

t (It, ct) follows from the concavity of

Jt(·, ·, ·|ct). For the monotonicity results, we only need to consider the case It ≥ xt(ct), i.e., x
∗
t (It, ct) = It.

First, we show x∗
t (It, ct)+q∗t (It, ct) and d∗

t (It, ct) are increasing in It. Let wt := It+qt, we rewrite the objective

function for the case It ≥ xt(ct) as

J1
t (wt, dt, It|ct) =R(dt)+Λ(It − dt)+Ψt(wt − dt|ct)− γctwt + γctIt,

where Λ(·) and Ψt(·|·) are defined in (2). Since Λ(·) and Ψt(·|ct) are concave in y for each fixed ct, J
1
t (·, ·, ·|ct) is

jointly supermodular in (wt, dt, It). Since the feasible set [It,+∞)× [d, d̄]×R is a lattice, x∗
t (It, ct)+q∗t (It, ct) =

w∗
t (It, ct) and d∗

t (It, ct) are increasing in It for any fixed ct.

Next, we show ∆∗
t (It, ct) is increasing, whereas q

∗
t (It, ct) is decreasing, in It. Rewrite the objective function

as

J2
t (∆t,−qt, It|ct) =R(It −∆t)+Λ(∆t)+Ψt(∆t − (−qt)|ct)+ γ(−qt).

Since Λ(·) and Ψt(·|ct) are concave in y for each fixed ct, J
2
t (·, ·, ·|ct) is jointly supermodular in (∆t,−qt, It).

Since the feasible set [It − d̄, It − d]× (−∞,0]×R is a lattice, ∆∗
t (It, ct) and −q∗t (It, ct) are increasing in It

for any fixed ct. Thus, q
∗
t (It, ct) is decreasing in It.

Finally, we show part (c). It remains to show the existence of I∗
t (ct). Suppose limIt→+∞ q∗t (It, ct) =

q∗ > 0. Since Vt−1(·|·) is uniformly bounded from above by
∑T

t=1 α
t−1p̄d̄ < +∞. Hence,
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limIt−1→+∞ ∂It−1
Vt−1(It−1|ct−1) ≤ 0 and limIt→+∞ ∂qtJt(It, q∗, d

∗
t (It, ct)|ct) ≤ −γct < 0, which violates the

first order condition with respect to qt. Therefore, q∗ = 0. Hence, I∗
t (ct) =min{It : q

∗
t (It, ct) = 0}. Q.E.D.

Proof of Theorem 2: First, we rewrite the objective function Jt(xt, qt, dt|ct) as in Equation (2), where

Λ(y) :=Eǫt{−h(y− ǫt)
+ − b(y− ǫt)

−} and Ψt(y|ct) := αEǫt,ξt{Vt−1(y− ǫt|st(ct, ξt))|ct}.

Part (a). If b≤ ct −αµt(ct), b− ct +αµt(ct)≤ 0 and, thus, Jt(·, qt, dt) is decreasing in xt for any (qt, dt)

and ct. Since we select the lexicographically smallest optimizer, xt(ct) =−∞. Now we suppose γct ≤ ct− b <

αµt(ct). If xt(ct) > −∞, the first order condition with respect to qt implies that ∂yΨt(xt(ct) + qt(ct) −

dt(ct)|ct)≤ γct, and, hence, ∂xt
Jt(xt(ct), qt(ct), dt(ct)|ct)≤ b+ γct − ct ≤ 0, since ∂yΛ(y)≤ b. The first order

condition with respect to xt suggests that b+γct−ct = 0 and ∂yΛ(xt(ct)−dt(ct)) = b= ∂yΛ(−∞). Therefore,

(xt(ct)− δ, qt(ct)+ δ, dt(ct)) is another unconstrained optimizer of Jt(xt, qt, dt|ct), for any δ > 0. This contra-

dicts the assumption that (xt(ct), qt(ct), dt(ct)) is the lexicographically smallest optimizer. Hence, xt(ct) =

−∞, if b≤max{ct − γct, ct −αµt(ct)}.

Part (b). If γct ≥ αµt(ct), by Theorem 1(a), supy ∂yΨt(y|ct)≤ αµt(ct)≤ γct. Hence,

supxt∈R,qt≥0,dt∈[d,d̄]{∂qtJt(xt, qt, dt|ct)} ≤ γct − γct ≤ 0. Since we choose the lexicographically smallest opti-

mizer, qt(ct) = 0.

Part (c). For t = 1, observe that limy→−∞ ∂yH1(y|c1) = −αµ1(c1). If b ≤ c1, sup{∂x1
J1(x1, q1, d1|c1)} ≤

b − c1 + αµ1(c1) − αµ1(c1) ≤ 0, for any xt. Hence, xt(c1) = −∞. On the other hand, if b − c1 > 0,

∂x1
J1(x1, q1, d1|c1)≥

b−c1
2

> 0 as x1 →−∞, i.e., x1(c1)>−∞. Q.E.D.

Proof of Theorem 3: Part (a) We show that Vt(It|ct) is convexly decreasing in ct by backward induction.

Observe that V0(I0|c0) = 0 for any I0 and is, thus, convexly decreasing in c0. It suffices to show that if

Vt−1(It−1|ct−1) is convexly decreasing in ct−1, Vt(It|ct) is convexly decreasing in ct, given st(ct, ξt) is concavely

increasing in ct for any realization of ξt.

For any ĉt, ct, let η ∈ [0,1] and c̄= ηĉt +(1− η)ct. For any given xt, qt, dt and realized ǫt and ξt,

ηVt−1(xt + qt − dt − ǫt|st(ĉt, ξt))+ (1− η)Vt−1(xt + qt − dt − ǫt|st(ct, ξt))

≥Vt−1(xt + qt − dt − ǫt|ηst(ĉt, ξt)+ (1− η)st(ct, ξt))

≥Vt−1(xt + qt − dt − ǫt|st(c̄, ξt)),

where the first inequality follows from the convexity of Vt−1(It−1|ct−1) in ct−1, the second from the concavity

of st(ct, ξt) in ct and the monotonicity that Vt−1(It−1|ct−1) is decreasing in ct−1. Moreover, since st(ct, ξt) is

increasing in ct for any realized ξt, Vt−1(xt − dt − ǫt|st(ct, ξt)) is convexly decreasing in ct. Since convexity

and monotonicity are preserved under expectation,

ctIt + Jt(xt, qt, dt|ct) =R(dt)− ct(xt − It)− γctqt −Λ(xt − dt)+αEǫt,ξt{Vt−1(xt + qt − dt − ǫt|st(ct, ξt))}

is convexly decreasing in ct, since xt ≥ It. Convexity and monotonicity are preserved under maximization

operated on a family of convexly decreasing functions, so Vt(It|ct) is convexly decreasing in ct. This completes

the proof of part (a).
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Part (b). We show part (b) by backward induction, i.e., if ŝt(ct, ξt)≥cx st(ct, ξt) and V̂t−1(It−1|ct−1)≥

Vt−1(It−1|ct−1) for all (It−1, ct−1), V̂t(It|ct) ≥ Vt(It|ct) for all (It, ct). Since V̂0(I0|c0) = V0(I0|c0) = 0 for all

(I0, c0), the initial condition is satisfied.

V̂t(It|ct) = ctIt +max{R(dt)− ctxt − γctqt +Λ(xt − dt)

+αE[V̂t−1(xt + qt − dt − ǫt|ŝt(ct, ξt))|ct] : (xt, qt, dt) ∈F (It)}

≥ ctIt +max{R(dt)− ctxt − γctqt +Λ(xt − dt)

+αE[V̂t−1(xt + qt − dt − ǫt|st(ct, ξt))|ct] : (xt, qt, dt) ∈F (It)}

≥ ctIt +max{R(dt)− ctxt − γctqt +Λ(xt − dt)

+αE[Vt−1(xt + qt − dt − ǫt|st(ct, ξt))|ct] : (xt, qt, dt) ∈F (It)}

= Vt(It|ct),

where the first inequality follows from the convexity of V̂t−1(It−1|·), and the second from the inequality

V̂t−1(It−1|ct−1)≥ Vt−1(It−1|ct−1) for all (It−1, ct−1). Q.E.D.

Proof of Theorem 4: First, part (a). As in Equation (3), we rewrite Jt(xt, qt, dt|ct) = J̃t(∆t, qt, dt|ct) in

terms of (∆t, qt, dt). It’s clear that maximizing Jt(xt, qt, dt|ct) is equivalent to maximizing J̃t(∆t, qt, dt|ct). By

(3), dt(ct) = argmaxdt∈[d,d̄]{R(dt)− ctdt} follows immediately.

We now prove parts (b) - (c) together by backward induction.

We need to show that, if ∂It−1
Vt−1(It−1|ĉt−1)≥ ∂It−1

Vt−1(It−1|ct−1) for any ĉt−1 > ct−1 and It−1 ∈R, for

any ĉt > ct, (a) dt(ĉt)≤ dt(ct), (b) d
∗
t (It, ĉt)≤ d∗

t (It, ct), and (c) ∂ItVt(It|ĉt)≥ ∂ItVt(It|ct) for all It. For t=0,

∂I0V0(I0|ĉ0) = ∂I0V0(I0|c0) = 0 for any ĉt > ct. The initial condition is, thus, satisfied.

Without loss of generality, we assume that xt(ĉt) and xt(ct) are finite, i.e., xt(ĉt), xt(ct) > −∞. Our

argument can be easily extended to the extreme case in which xt(ĉt) = −∞ or xt(ct) = −∞. We rewrite

the objective function Jt(xt, qt, dt|ct) as (2). First, we show that if ĉt > ct, ∂yΨt(y|ĉt) ≥ ∂yΨt(y|ct).

Since ĉt > ct, st(ĉt, ξt) ≥s.d. st(ct, ξt). As in the proof of Lemma 1, we have the following: ∂yΨt(y|ĉt) =

αEǫt,ξt{∂It−1
Vt−1(y − ǫt|st(ĉt, ξt))} ≥ αEǫt,ξt{∂It−1

Vt−1(y − ǫt|st(ct, ξt))} = ∂yΨt(y|ct), where the inequality

follows from the assumption that ∂It−1
Vt−1(It−1|ĉt−1)≥ ∂It−1

Vt−1(It−1|ct−1) for any ĉt−1 > ct−1.

dt(ĉt)≤ dt(ct) follows directly from (1) and the concavity of R(·). Now we show d∗
t (It, ĉt)≤ d∗

t (It, ct) for

all It. If It ≤min{xt(ĉt), xt(ct)}, d
∗
t (It, ĉt) = dt(ĉt)≤ dt(ct) = d∗

t (It, ct).

If It ≥max{xt(ĉt), xt(ct)} and d∗
t (It, ĉt)> d∗

t (It, ct), the concavity of Λ(·) implies that ∂yΛ(It−d∗
t (It, ĉt))≥

∂yΛ(It − d∗
t (It, ct)). If It ∈ [xt(ct), I

∗
t (ct)] ∩ [xt(ĉt), I

∗
t (ĉt)], the first order condition with respect to qt

yields that ∂yΨt(It + q∗t (It, ĉt) − d∗
t (It, ĉt)|ĉt) = γĉt > γct = ∂yΨt(It + q∗t (It, ct) − d∗

t (It, ct)|ct). If It ≥

max{I∗
t (ĉt), I

∗
t (ct)}, since ∂yΨt(y|ĉt)≥ ∂yΨt(y|ct), ∂yΨt(It−d∗

t (It, ĉt)|ĉt)≥ ∂yΨt(It−d∗
t (It, ct)|ct). Therefore,

if It ∈ [xt(ct), I
∗
t (ct)]∩ [xt(ĉt), I

∗
t (ĉt)] or It ≥max{I∗

t (ĉt), I
∗
t (ct)}, ∂yΨt(It+q∗t (It, ĉt)−d∗

t (It, ĉt)|ĉt)≥ ∂yΨt(It+

q∗t (It, ct) − d∗
t (It, ct)|ct). Since d∗

t (It, ĉt) > d∗
t (It, ct), Lemma 2 yields that ∂dtJt(It, q

∗
t (It, ĉt), d

∗
t (It, ĉt)|ĉt) ≥

∂dtJt(It, q
∗
t (It, ct), d

∗
t (It, ct)|ct). Therefore,

R′(d∗
t (It, ĉt)) = ∂dtJt(It, q

∗
t (It, ĉt), d

∗
t (It, ĉt)|ĉt)+ ∂yΛ(It − d∗

t (It, ĉt))+ ∂yΨt(It + q∗t (It, ĉt)− d∗
t (It, ĉt)|ĉt)

≥ ∂dtJt(It, q
∗
t (It, ct), d

∗
t (It, ct)|ct)+ ∂yΛ(It − d∗

t (It, ct))+ ∂yΨt(It + q∗t (It, ct)− d∗
t (It, ct)|ct)

=R′(d∗
t (It, ct)).
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which violates the strict concavity of R(·). This contradiction proves that d∗
t (It, ĉt) ≤ d∗

t (It, ct) if It ∈

[xt(ct), I
∗
t (ct)]∩ [xt(ĉt), I

∗
t (ĉt)] or It ≥max{I∗

t (ĉt), I
∗
t (ct)}.

If xt(ĉt) ≥ xt(ct) and It ∈ [xt(ct), xt(ĉt)], d∗
t (It, ĉt) = d∗

t (xt(ĉt), ĉt) = dt(ĉt) ≤ dt(ct) = d∗
t (xt(ct), ct) ≤

d∗
t (It, ct), where the inequalities follow from Theorem 1(d). Likewise, if xt(ct)≥ xt(ĉt) and It ∈ [xt(ĉt), xt(ct)],

we have d∗
t (It, ĉt)≤ d∗

t (xt(ct), ĉt)≤ d∗
t (xt(ct), ct) = d∗

t (It, ct). Applying the same argument, we can show that

d∗
t (It, ĉt)≤ d∗

t (It, ct) for It ∈ [I∗
t (ct), I

∗
t (ĉt)] or It ∈ [I∗

t (ĉt), I
∗
t (ct)]. Therefore, d

∗
t (It, ĉt)≤ d∗

t (It, ct) for all It.

To complete the induction, we need to show ∂ItVt(It|ĉt)≥ ∂ItVt(It|ct) for any It. First we assume that It ≥

max{xt(ct), xt(ĉt)}, ∂ItVt(It|ct) = ∂yΛ(It − d∗
t (It, ct)) + ∂yΨt(It + q∗t (It, ct)− d∗

t (It, ct)|ct) and ∂ItVt(It|ĉt) =

∂yΛ(It − d∗
t (It, ĉt)) + ∂yΨt(It + q∗t (It, ĉt) − d∗

t (It, ĉt)|ĉt). If d∗
t (It, ĉt) < d∗

t (It, ct), Lemma 2 implies that

∂dtJt(It, q
∗
t (It, ĉt), d

∗
t (It, ĉt)|ĉt)≤ ∂dtJt(It, q

∗
t (It, ct), d

∗
t (It, ct)|ct) and the strict concavity of R(·) implies that

R′(d∗
t (It, ĉt))>R′(d∗

t (It, ct)). Therefore,

∂ItVt(It|ĉt) = ∂yΛ(It − d∗
t (It, ĉt))+ ∂yΨt(It + q∗t (It, ĉt)− d∗

t (It, ĉt)|ĉt)

=R′(d∗
t (It, ĉt))− ∂dtJt(It, q

∗
t (It, ĉt), d

∗
t (It, ĉt)|ĉt)

>R′(d∗
t (It, ct))− ∂dtJt(It, q

∗
t (It, ct), d

∗
t (It, ct)|ct)

= ∂yΛ(It − d∗
t (It, ct))+ ∂yΨt(It + q∗t (It, ct)− d∗

t (It, ct)|ct)

= ∂ItVt(It|ct).

If d∗
t (It, ĉt) = d∗

t (It, ct), there are two cases (a) q∗t (It, ĉt)> q∗t (It, ct), and (b) q∗t (It, ĉt)≤ q∗t (It, ct). If q
∗
t (It, ĉt)>

q∗t (It, ct), Lemma 2 implies that ∂yΨt(It + q∗t (It, ĉt)−d∗
t (It, ĉt)|ĉt)−γĉt ≥ ∂yΨt(It + q∗t (It, ct)−d∗

t (It, ct)|ct)−

γct, i.e., ∂yΨt(It + q∗t (It, ĉt) − d∗
t (It, ĉt)|ĉt) > ∂yΨt(It + q∗t (It, ct) − d∗

t (It, ct)|ct). If q∗t (It, ĉt) ≤ q∗t (It, ct),

∂yΨt(y|ĉt) ≥ ∂yΨt(y|ct) implies that ∂yΨt(It + q∗t (It, ĉt) − d∗
t (It, ĉt)|ĉt) ≥ ∂yΨt(It + q∗t (It, ct) − d∗

t (It, ct)|ct).

Moreover, since d∗
t (It, ĉt) = d∗

t (It, ct), ∂yΛ(It − d∗
t (It, ĉt)) = ∂yΛ(It − d∗

t (It, ct)). Therefore, ∂ItVt(It|ĉt) ≥

∂ItVt(It|ct) for all It ≥max{xt(ct), xt(ĉt)}.

If It ≤ min{xt(ct), xt(ĉt)}, ∂ItVt(It|ĉt) = ĉt > ct = ∂ItVt(It|ct). If It ∈ [xt(ct), xt(ĉt)], ∂ItVt(It|ĉt) = ĉt >

ct ≥ ∂ItVt(It|ct). If It ∈ [xt(ĉt), xt(ct)], ∂ItVt(It|ĉt)≥ ∂ItVt(xt(ct)|ĉt)≥ ∂ItVt(xt(ct)|ct) = ct = ∂ItVt(It|ct). This

completes the induction and, thus, the proof. Q.E.D.

Proof of Theorem 5: For all parts, without loss of generality, we assume that xt(ĉt), xt(ct) > −∞. Our

argument can be easily extended to the extreme case in which xt(ĉt) =−∞ or xt(ct) =−∞.

Part (a). Since qt(ct) > 0, the first-order condition with respect to qt implies that ∂yΨt(∆t(ct) +

qt(ct)|ct) = γct. Since xt(ct)>−∞, the optimality of ∆t(ct) yields that ∂∆t
J̃t(∆t(ct), qt(ct), dt(ct)) = 0. Hence,

∂yΛ(∆t(ct))− (1− γ)ct+ ∂yΨt(∆t(ct)+ qt(ct)|ct)− γct =0 and, thus, ∂yΛ(∆t(ct))− (1− γ)ct = 0. Since Λ(·)

is concave, the KKT theorem implies that ∆t(ct) = argmax∆t
{Λ(∆t)− (1− γ)ct∆t}.

Part (b). We consider the case γ < 1 only, because the case γ = 1 follows from similar argument. Since

qt(ct)> 0, the first-order condition with respect to qt implies that

∂yΨt(∆t(ct)+ qt(ct)|ct)− γct = 0≥ ∂yΨt(∆t(ĉt)+ qt(ĉt)|ĉt)− γĉt. (4)
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If ∆t(ĉt)>∆t(ct), Lemma 2 implies that

∂yΛ(∆t(ĉt))+ ∂yΨt(∆t(ĉt)+ qt(ĉt)|ĉt)− ĉt ≥ ∂yΛ(∆t(ct))+ ∂yΨt(∆t(ct)+ qt(ct)|ct)− ct. (5)

Inequalities (4) and (5) imply that ∂yΛ(∆t(ĉt))− ∂yΛ(∆t(ct))≥ (1− γ)(ĉt − ct)> 0, which contradicts the

concavity of Λ(·). Therefore, ∆t(ĉt) ≤ ∆t(ct) and, thus, xt(ĉt) = ∆t(ĉt) + dt(ĉt) ≤ ∆t(ct) + dt(ct) = xt(ct).

x∗
t (It, ĉt)≤ x∗

t (It, ct) follows immediately from xt(ĉt)≤ xt(ct).

Part (c). Since qt(ĉt)> 0, the first-order condition with respect to qt implies that

∂yΨt(∆t(ĉt)+ qt(ĉt)|ĉt)− γĉt = 0≥ ∂yΨt(∆t(ct)+ qt(ct)|ct)− γct. (6)

If ∆t(ct)>∆t(ĉt), Lemma 2 implies that

∂yΛ(∆t(ct))+ ∂yΨt(∆t(ct)+ qt(ct)|ct)− ct ≥ ∂yΛ(∆t(ĉt))+ ∂yΨt(∆t(ĉt)+ qt(ĉt)|ĉt)− ĉt. (7)

Inequalities (6) and (7) imply that ∂yΛ(∆t(ct))− ∂yΛ(∆t(ĉt))≥ (γ − 1)(ĉt − ct)> 0, which contradicts the

concavity of Λ(·). Therefore, ∆t(ĉt)≥∆t(ct), if γ > 1 and qt(ĉt)> 0. Q.E.D.

Proof of Theorem 6: We prove parts (a) - (c) together by backward induction.

We need to show that: under the condition that γ = 1 and κt(ct) is decreasing in ct, if ∂It−1
Vt−1(It−1|ĉt−1)−

ĉt−1 ≤ ∂It−1
Vt−1(It−1|ct−1)− ct−1 for any ĉt−1 > ct−1, (a) ∆t(ĉt) ≤ ∆t(ct), (b) xt(ĉt) ≤ xt(ct), (c) I∗

t (ĉt) ≤

I∗
t (ct), (d) q∗t (It, ĉt) ≤ q∗t (It, ct), and (e) ∂ItVt(It|ĉt) − ĉt ≤ ∂ItVt(It|ct) − ct for any ĉt > ct. Note that

∂I0V0(I0|ĉ0)− ĉ0 =−ĉ0 <−c0 = ∂I0V0(I0|c0)− c0. Hence, the initial condition is satisfied.

Without loss of generality, we assume that xt(ĉt), xt(ct)>−∞. Our argument can be easily extended to the

extreme case in which xt(ĉt) =−∞ or xt(ct) =−∞. Since γ =1 and κt(ct) is decreasing in ct, b− ct+αµt(ct)

and the risk-premium of the forward-buying contract φt(ct) :=αµt(ct)−γct are both decreasing in ct. It’s clear

that ∂It−1
Vt−1(It−1|ĉt−1)− ĉt−1 ≤ ∂It−1

Vt−1(It−1|ct−1)− ct−1 for any ĉt−1 > ct−1 implies that ∂yHt(y|ĉt) ≤

∂yHt(y|ct) for any ĉt > ct. We also have that ∂dtR(dt|ĉt)≤ ∂dtR(dt|ct). The first order condition with respect

to xt implies that:
{

b− ĉt+αµt(ĉt)+ ∂yL(∆t(ĉt))+ ∂yHt(∆t(ĉt)+ qt(ĉt)|ĉt) = 0,

b− ct+αµt(ct)+ ∂yL(∆t(ct))+ ∂yHt(∆t(ct)+ qt(ct)|ct) = 0.
(8)

If qt(ĉt)> qt(ct), Lemma 2 implies that:

αµt(ĉt)− ĉt + ∂yHt(∆t(ĉt)+ qt(ĉt)|ĉt) = ∂qtJt(xt(ĉt), qt(ĉt), dt(ĉt)|ĉt)

≥ ∂qtJt(xt(ct), qt(ct), dt(ct)|ct) (9)

= αµt(ct)− ct + ∂yHt(∆t(ct)+ qt(ct)|ct)

Hence, b+ ∂yL(∆t(ĉt)) ≤ b+ ∂yL(∆t(ct)). (10)

Since αµt(ĉt) − ĉt ≤ αµt(ct) − ct, (9) also implies that ∂yHt(∆t(ct) + qt(ct)|ct) ≤ ∂yHt(∆t(ĉt) + qt(ĉt)|ĉt).

Hence, ∆t(ct) + qt(ct)≥∆t(ĉt) + qt(ĉt), by ∂yHt(y|ĉt)≤ ∂yHt(y|ct). So we have ∆t(ct)>∆t(ĉt). Therefore,

inequality in (10) must hold as equality. The concavity of L(·) implies that ∂yL(∆) is a constant for ∆ ∈
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[∆t(ĉt),∆t(ct)]. Since the lexicographically smallest optimizer is selected, the firm with ct should decrease

∆t(ct) and increase qt(ct), which contradicts the selection of (xt(ct), qt(ct), dt(ct)). Therefore, qt(ĉt)≤ qt(ct).

If qt(ĉt) = qt(ct), (8) yields that ∆t(ĉt) ≤ ∆t(ct) and, hence, xt(ĉt) = dt(ĉt) + ∆t(ĉt) ≤ dt(ct) + ∆t(ct) =

xt(ct). If qt(ĉt)< qt(ct), Lemma 2 implies that the inequalities in (9) and (10) are reversed. The concavity of

L(·) yields that ∆t(ĉt)≤∆t(ct) and, thus, xt(ĉt)≤ xt(ct).

We next show that q∗t (It, ĉt)≤ q∗t (It, ct) for all It. If It ∈ [xt(ĉt), xt(ct)], q
∗
t (It, ĉt)≤ qt(ĉt)≤ qt(ct). Assume

that It ≥ xt(ct) and q∗t (It, ĉt), q
∗
t (It, ct)> 0. The first order condition with respect to qt suggests that:

{

αµt(ĉt)− ĉt + ∂yHt(It + q∗t (It, ĉt)− d∗
t (It, ĉt)|ĉt) = 0,

αµt(ct)− ct + ∂yHt(It + q∗t (It, ct)− d∗
t (It, ct)|ct) = 0.

(11)

Since αµt(ĉt)− ĉt ≤αµt(ct)− ct, ∂yHt(It + q∗t (It, ĉt)− d∗
t (It, ĉt)|ĉt)≥ ∂yHt(It + q∗t (It, ct)− d∗

t (It, ct)|ct). Since

∂yHt(y|ĉt)≤ ∂yHt(y|ct), q
∗
t (It, ĉt)−d∗

t (It, ĉt)≤ q∗t (It, ct)−d∗
t (It, ct). Therefore, q

∗
t (It, ĉt)≤ q∗t (It, ct). Thus, we

have that I∗
t (ĉt)≤ I∗

t (ct).

To conclude the proof, we need to show ∂ItVt(It|ĉt)− ĉt ≤ ∂ItVt(It|ct)− ct, for any ĉt > ct. If It ≤ xt(ct),

∂ItVt(It|ĉt)− ĉt ≤ 0 = ∂ItVt(It|ct)− ct. If It ∈ [xt(ct), I
∗
t (ĉt)] (without loss of generality, we assume xt(ct)≤

I∗
t (ĉt)), (11) holds. Therefore,

∂ItVt(It|ĉt)− ĉt =b− ĉt +αµt(ĉt)+ ∂yL(It − d∗
t (It, ĉt))−αµt(ĉt)+ ĉt

=b+ ∂yL(It − d∗
t (It, ĉt))

≤b+ ∂yL(It − d∗
t (It, ct))

=∂ItVt(It|ct)− ct,

where the first equality follows from the envelope theorem and the inequality follows from the concavity of

L(·). If It ∈ [I∗
t (ĉt), I

∗
t (ct)],

αµt(ĉt)− ĉt + ∂yHt(It + q∗t (It, ĉt)− d∗
t (It, ĉt)|ĉt) ≤ αµt(ct)− ct + ∂yHt(It + q∗t (It, ct)− d∗

t (It, ct)|ct) = 0.

Therefore, ∂ItVt(It|ĉt)− ĉt ≤ b− ĉt+αµt(ĉt)+ ∂yL(It − d∗
t (It, ĉt))−αµt(ĉt)+ ĉt

= b+ ∂yL(It − d∗
t (It, ĉt))

≤ b+ ∂yL(It − d∗
t (It, ct))

= ∂ItVt(It|ct)− ct.

If It ≥ I∗
t (ct), q

∗
t (It, ĉt) = q∗t (It, ct) = 0. Since d∗

t (It, ĉt)≤ d∗
t (It, ct) and ∂yHt(y|ĉt)≤ ∂yHt(y|ct),

∂ItVt(It|ĉt)− ĉt =b− ĉt +αµt(ĉt)+ ∂yL(It − d∗
t (It, ĉt))+ ∂yHt(It − d∗

t (It, ĉt)|ĉt)

≤b− ct +αµt(ct)+ ∂yL(It − d∗
t (It, ct))+ ∂yHt(It − d∗

t (It, ct)|ct)

=∂ItVt(It|ct)− ct.

Thus, ∂ItVt(It|ĉt)− ĉt ≤ ∂ItVt(It|ct)− ct for all It. Q.E.D.

Proof of Theorem 7: We show parts (a) - (e) together by backward induction.

Without loss of generality, we assume that x̂t(ct), xt(ct)>−∞. Our argument can be easily extended to the

extreme case in which x̂t(ct) =−∞ or xt(ct) =−∞. We only provide the proof for the case qt(ct)> 0, since
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the other case, qt(ct) = 0, can be proved using the same method with simpler argument. Rewrite the objective

function Jt(xt, qt, dt|ct) as (2). Correspondingly, we define Ĵt(·, ·, ·|ct) and Ψ̂t(·|ct) as the counterparts of

Jt(·, ·, ·|ct) and Ψt(·|ct) in the model with procurement cost process {ŝt(ct, ξt)}
1
t=T .

We first show that if ∂yΨ̂t(y|ct)≥ ∂yΨt(y|ct) for all y, parts (b) - (e) hold. This condition holds for t= t∗.

The first order condition with respect to xt implies that

∂yΛ(x̂t(ct)− d̂t(ct))+ ∂yΨ̂t(x̂t(ct)+ q̂t(ct)− d̂t(ct)|ct)

=∂yΛ(xt(ct)− dt(ct))+ ∂yΨt(xt(ct)+ qt(ct)− dt(ct)|ct) = ct.
(12)

By (1), d̂t(ct) = dt(ct). Since qt(ct)> 0, from (12), ∆̂t(ct) =∆t(ct), x̂t(ct) = xt(ct), and q̂t(ct)≥ qt(ct).

If It ≥ xt(ct) = x̂t(ct), assume that q̂∗t (It, ct) < q∗t (It, ct). Lemma 2 implies that ∂yΨt(It + q∗t (It, ct) −

d∗
t (It, ct)|ct) ≥ ∂yΨ̂t(It + q̂∗t (It, ct) − d̂∗

t (It, ct)|ct). Since ∂yΨ̂t(y|ct) ≥ ∂yΨt(y|ct) for all y, q∗t (It, ct) −

d∗
t (It, ct) ≤ q̂∗t (It, ct) − d̂∗

t (It, ct). Hence, d∗
t (It, ct) > d̂∗

t (It, ct). Thus, ∆∗
t (It, ct) = It − d∗

t (It, ct) <

It − d̂∗
t (It, ct) = ∆̂∗

t (It, ct). By the concavity of Λ(·), we have: ∂yΛ(∆
∗
t (It, ct)) + ∂yΨ

∗
t (q

∗
t (It, ct) +

∆∗
t (It, ct)|ct) ≥ ∂yΛ(∆̂

∗
t (It, ct)) + ∂yΨ̂

∗
t (q̂

∗
t (It, ct) + ∆̂∗

t (It, ct)|ct). By Lemma 2, d∗
t (It, ct) > d̂∗

t (It, ct) implies

that ∂dtJt(It, q
∗
t (It, ct), d

∗
t (It, ct)|ct)≥ ∂dt Ĵt(It, q̂

∗
t (It, ct), d̂

∗
t (It, ct)|ct). Therefore,

R′(d∗
t (It, ct)) =∂dtJt(It, q

∗
t (It, ct), d

∗
t (It, ct)|ct)+ ∂yΛ(∆

∗
t (It, ct))+ ∂yΨt(q

∗
t (It, ct)+∆∗

t (It, ct)|ct)

≥∂dt Ĵt(It, q̂
∗
t (It, ct), d̂

∗
t (It, ct)|ct)+ ∂yΛ(∆̂

∗
t (It, ct))+ ∂yΨ̂t(q̂

∗
t (It, ct)+ ∆̂∗

t (It, ct)|ct)

=R′(d̂∗
t (It, ct))

However, d∗
t (It, ct) > d̂∗

t (It, ct) suggests that R′(d∗
t (It, ct)) < R′(d̂∗

t (It, ct)). This contradiction implies that

q̂∗t (It, ct)≥ q∗t (It, ct) and, thus Î
∗
t (ct)≥ I∗

t (ct).

If It ∈ [x∗
t (ct), I

∗
t (ct)], q

∗
t (It, ct)> 0 and q̂∗t (It, ct)> 0. The first order condition with respect to qt implies that

∂yΨt(It + q∗t (It, ct)− d∗
t (It, ct)) = ∂yΨ̂t(It + q̂∗t (It, ct)− d̂∗

t (It, ct)) = γct. This equality, together with the first

order condition with respect to dt, implies that d∗
t (It, ct) = d̂∗

t (It, ct). If It ≥ Î∗
t (ct), q

∗
t (It, ct) = q̂∗t (It, ct) = 0.

If d∗
t (It, ct)< d̂∗

t (It, ct), Lemma 2 implies that ∂dtJt(It,0, d
∗
t (It, ct)|ct)≥ ∂dt Ĵt(It,0, d̂

∗
t (It, ct)|ct). Therefore,

R′(d∗
t (It, ct)) =∂dtJt(It,0, d

∗
t (It, ct)|ct)+ ∂yΛ(∆

∗
t (It, ct))+ ∂yΨt(∆

∗
t (It, ct)|ct)

≥∂dt Ĵt(It,0, d̂
∗
t (It, ct)|ct)+ ∂yΛ(∆̂

∗
t (It, ct))+ ∂yΨ̂t(∆̂

∗
t (It, ct)|ct)

=R′(d̂∗
t (It, ct))

However, d∗
t (It, ct) > d̂∗

t (It, ct) suggests that R′(d∗
t (It, ct)) < R′(d̂∗

t (It, ct)). This contradiction implies that

d∗
t (It, ct)≤ d̂∗

t (It, ct) for It ≥ Î∗
t (ct).

If I∗
t (ct)< It < Î∗

t (ct), q̂
∗
t (It, ct)> 0 and q∗t (It, ct) = 0. The first order condition with respect to qt implies

that ∂yΨt(It −d∗
t (It, ct))≤ ∂yΨ̂t(It + q̂∗t (It, ct)− d̂∗

t (It, ct)) = γct. If d
∗
t (It, ct)< d̂∗

t (It, ct), Lemma 2 yields that

∂dt Ĵt(It, q̂
∗
t (It, ct), d̂

∗
t (It, ct))≥ ∂dtJt(It,0, d

∗
t (It, ct)). Therefore,

R′(d∗
t (It, ct)) =∂dtJt(It,0, d

∗
t (It, ct)|ct)+ ∂yΛ(It − d∗

t (It, ct))+ ∂yΨt(It − d∗
t (It, ct)|ct)

≤∂dt Ĵt(It, q̂
∗
t (It, ct), d̂

∗
t (It, ct)|ct)+ ∂yΛ(It − d̂∗

t (It, ct))+ ∂yΨ̂t(It + q̂∗t (It, ct)− d̂∗
t (It, ct)|ct)

=R′(d̂∗
t (It, ct))

However, d∗
t (It, ct) < d̂∗

t (It, ct) implies that R′(d∗
t (It, ct)) > R′(d̂∗

t (It, ct)). This contradiction shows that

d∗
t (It, ct)≥ d̂∗

t (It, ct) for all It ≥ x∗
t (ct) if ∂yΨ̂t(y|ct)≥ ∂yΨt(y|ct) for all y. ∆̂

∗
t (It, ct)≥∆∗

t (It, ct) then follows

from d∗
t (It, ct)≥ d̂∗

t (It, ct).



Xiao, Yang, and Zhang: Dynamic Pricing and Inventory Management under Fluctuating Procurement Costs
Article submitted to Manufacturing & Service Operations Management; manuscript no. 9

To complete the induction, we show that if ∂yΨ̂t(y|ct)≥ ∂yΨt(y|ct) for all y, ∂It V̂t(It|ct)≥ ∂ItVt(It|ct) for

all It. If It ≤ xt(ct) = x̂t(ct), ∂It V̂t(It|ct) = ∂ItVt(It|ct) = ct.

If It ∈ [xt(ct), I
∗
t (ct)], ∂yΨt(It + q∗t (It, ct) − d∗

t (It, ct)|ct) = ∂yΨ̂t(It + q̂∗t (It, ct) − d̂∗
t (It, ct)|ct) = γct, and

d∗
t (It, ct) = d̂∗

t (It, ct). Hence,

∂It V̂t(It|ct) =∂yΛ(It − d̂∗
t (It, ct))+ ∂yΨ̂t(It + q̂∗t (It, ct)− d̂∗

t (It, ct)|ct)

=∂yΛ(It − d∗
t (It, ct))+ ∂yΨt(It + q∗t (It, ct)− d∗

t (It, ct)|ct)

=∂ItVt(It|ct).

If It ∈ [I∗
t (ct), Î

∗
t (ct)], ∂yΨt(It − d∗

t (It, ct)|ct) ≤ ∂yΨ̂t(It + q̂∗t (It, ct) − d̂∗
t (It, ct)|ct) = γct, and d∗

t (It, ct) ≥

d̂∗
t (It, ct). We consider two cases d∗

t (It, ct) = d̂∗
t (It, ct) and d∗

t (It, ct) > d̂∗
t (It, ct). The same argument as the

one in the proof of Theorem 4 yields that ∂It V̂t(It|ct)≥ ∂ItVt(It|ct) for It ∈ [I∗
t (ct), Î

∗
t (ct)].

If It ≥ Î∗
t (ct), q

∗
t (It, ct) = q̂∗t (It, ct) = 0. The same argument as the one in the proof of Theorem 4 shows

that ∂It V̂t(It|ct)≥ ∂ItVt(It|ct) for It ≥ Î∗
t (ct). Finally, ∂It V̂t(It|ct)≥ ∂ItVt(It|ct) yields that

∂yΨ̂t+1(y|ct+1) =αE{∂It V̂t(y− ǫt|st+1(ct+1, ξt+1))} ≥ αE{∂ItVt(y− ǫt|st+1(ct+1, ξt+1))}= ∂yΨt+1(y|ct+1).

Since ∂yΨ̂t(y|ct)≥ ∂yΨt(y|ct) for t= t∗. The initial condition is satisfied. Hence, Theorem 7 follows for all

t≥ t∗. Q.E.D.

Proof of Theorem 8: We prove parts (a) - (c) together by backward induction.

Without loss of generality, we assume that xγ̂,t(ct), xγ,t(ct) > −∞ and qγ̂,t(ct), qγ,t(ct) > 0. Our argu-

ment can be easily extended to the extreme case in which xγ̂,t(ct) = −∞, xγ,t(ct) = −∞, qγ̂,t(ct) = 0, or

qγ,t(ct) = 0. We need to show that if ∂It−1
Vγ̂,t−1(It−1|ct−1) ≥ ∂It−1

Vγ,t−1(It−1|ct−1), (a) ∆γ̂,t(ct) ≥∆γ,t(ct),

(b) d∗
γ̂,t(It, ct) ≤ d∗

γ,t(It, ct), and (c) ∂ItVγ̂,t(It|ct) ≥ ∂ItVγ,t(It|ct). Since Vγ̂,0(·|c0) = Vγ,0(·|c0) ≡ 0, the initial

condition is satisfied.

We define Ψγ̂,t(y|ct) := E{Vγ̂,t(y − ǫt|st(ct, ξt))|ct} and Ψγ,t(y|ct) := E{Vγ,t(y − ǫt|st(ct, ξt))|ct}. It’s clear

from ∂It−1
Vγ̂,t−1(It−1|ct−1) ≥ ∂It−1

Vγ,t−1(It−1|ct−1) that ∂yΨγ̂,t(y|ct) ≥ ∂yΨγ,t(y|ct) for any y. dγ̂,t(ct) =

dγ,t(ct) follows directly from equation (1). The first-order condition with respect to qt implies that

∂yΨγ̂,t(∆γ̂,t(ct) + qγ̂,t(ct)|ct) = γ̂ct > γct = ∂yΨγ,t(∆γ,t(ct) + qγ,t(ct)|ct), and that with respect to xt implies

that ∂yΛ(∆γ̂,t(ct)) + ∂yΨγ̂,t(∆γ̂,t(ct) + qγ̂,t(ct)|ct) = ∂yΛ(∆γ,t(ct)) + ∂yΨγ,t(∆γ,t(ct) + qγ,t(ct)|ct) = ct. Hence,

∂yΛ(∆γ̂,t(ct)) = (1− γ̂)ct < (1− γ)ct = ∂yΛ(∆γ,t(ct)). The concavity of Λ(·) yields that ∆γ̂,t(ct) ≥∆γ,t(ct)

and, thus, xγ̂,t(ct) =∆γ̂,t(ct)+dγ̂,t(ct)≥∆γ,t(ct)+dγ,t(ct) = xγ,t(ct). It follows immediately that ∆∗
γ̂,t(It, ct)≥

∆∗
γ,t(It, ct) and x∗

γ̂,t(It, ct)≥ x∗
γ,t(It, ct).

If It ∈ [xγ,t(ct), xγ̂,t(ct)], d∗
γ̂,t(It, ct) = dγ̂,t(ct) = dγ,t(ct) ≤ d∗

γ,t(It, ct). If It ≥ xγ̂,t(ct) and d∗
γ̂,t(It, ct) >

d∗
γ,t(It, ct), ∂yΛ(It − d∗

γ̂,t(It, ct)) ≥ ∂yΛ(It − d∗
γ,t(It, ct)). There are two cases: (a) q∗γ̂,t(It, ct) > q∗γ,t(It, ct),

and (b)q∗γ̂,t(It, ct) ≤ q∗γ,t(It, ct). If q∗γ̂,t(It, ct) > q∗γ,t(It, ct), Lemma 2 implies that ∂yΨγ̂,t(It + q∗γ̂,t(It, ct) −

d∗
γ̂,t(It, ct)|ct) ≥ ∂yΨγ,t(It + q∗γ,t(It, ct) − d∗

γ,t(It, ct)|ct). If q
∗
γ̂,t(It, ct) ≤ q∗γ,t(It, ct), ∂yΨγ̂,t(y|ct) ≥ ∂yΨγ,t(y|ct)

and the concavity of Ψγ̂,t(·|ct) and Ψγ,t(·|ct) imply that ∂yΨγ̂,t(It + q∗γ̂,t(It, ct)− d∗
γ̂,t(It, ct)|ct)≥ ∂yΨγ,t(It +
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q∗γ,t(It, ct)−d∗
γ,t(It, ct)|ct). Thus, in both cases, ∂yΨγ̂,t(It+q∗γ̂,t(It, ct)−d∗

γ̂,t(It, ct)|ct)≥ ∂yΨγ,t(It+q∗γ,t(It, ct)−

d∗
γ,t(It, ct)|ct). Since d∗

γ̂,t(It, ct) > d∗
γ,t(It, ct), Lemma 2 implies that ∂dtJγ̂,t(It, q

∗
γ̂,t(It, ct), d

∗
γ̂,t(It, ct)|ct) ≥

∂dtJγ,t(It, q
∗
γ,t(It, ct), d

∗
γ,t(It, ct)|ct). Therefore, we have:

R′(d∗
γ̂,t(It, ct)) =∂dtJγ̂,t(It, q

∗
γ̂,t(It, ct), d

∗
γ̂,t(It, ct)|ct)+ ∂yΛ(It − d∗

γ̂,t(It, ct))+ ∂yΨγ̂,t(It + q∗γ̂,t(It, ct)− d∗
γ̂,t(It, ct)|ct)

≥∂dtJγ,t(It, q
∗
γ,t(It, ct), d

∗
γ,t(It, ct)|ct)+ ∂yΛ(It − d∗

γ,t(It, ct))+ ∂yΨγ,t(It + q∗γ,t(It, ct)− d∗
γ,t(It, ct)|ct)

=R′(d∗
γ,t(It, ct)),

which contradicts the strict concavity of R(·). Hence, d∗
γ̂,t(It, ct)≤ d∗

γ,t(It, ct) for all It.

To complete the induction, it suffices to show that ∂ItVγ̂,t(It|ct)≥ ∂ItVγ,t(It|ct) for all It. If It ≤ xγ̂,t(ct),

∂ItVγ̂,t(It|ct) = ct ≥ ∂ItVγ,t(It|ct). Now we consider the case It >xγ̂,t(ct). There are two cases (a) d∗
γ̂,t(It, ct) =

d∗
γ,t(It, ct), and (b) d∗

γ̂,t(It, ct)< d∗
γ,t(It, ct).

If d∗
γ̂,t(It, ct) = d∗

γ,t(It, ct), ∂yΛ(It − d∗
γ̂,t(It, ct)) = ∂yΛ(It − d∗

γ,t(It, ct)). Moreover, if q∗γ̂,t(It, ct)> q∗γ,t(It, ct),

Lemma 2 implies that ∂yΨγ̂,t(It + q∗γ̂,t(It, ct) − d∗
γ̂,t(It, ct)|ct) ≥ ∂yΨγ,t(It + q∗γ,t(It, ct) − d∗

γ,t(It, ct)|ct). If

q∗γ̂,t(It, ct) ≤ q∗γ,t(It, ct), ∂yΨγ̂,t(y|ct) ≥ ∂yΨγ,t(y|ct) and the concavity of Ψγ̂,t(·|ct) and Ψγ,t(·|ct) imply

that ∂yΨγ̂,t(It + q∗γ̂,t(It, ct) − d∗
γ̂,t(It, ct)|ct) ≥ ∂yΨγ,t(It + q∗γ,t(It, ct) − d∗

γ,t(It, ct)|ct). Thus, in both cases,

∂yΨγ̂,t(It + q∗γ̂,t(It, ct) − d∗
γ̂,t(It, ct)|ct) ≥ ∂yΨγ,t(It + q∗γ,t(It, ct) − d∗

γ,t(It, ct)|ct). Hence, ∂ItVγ̂,t(It|ct) =

∂yΛ(It − d∗
γ̂,t(It, ct)) + ∂yΨγ̂,t(It + q∗γ̂,t(It, ct)− d∗

γ̂,t(It, ct)|ct)≥ ∂yΛ(It − d∗
γ,t(It, ct)) + ∂yΨγ,t(It + q∗γ,t(It, ct)−

d∗
γ,t(It, ct)|ct) = ∂ItVγ,t(It|ct).

If d∗
γ̂,t(It, ct)< d∗

γ,t(It, ct),R
′(d∗

γ̂,t(It, ct))>R′(d∗
γ,t(It, ct)), and, by Lemma 2, ∂dtJγ̂,t(It, q

∗
γ̂,t(It, ct), d

∗
γ̂,t(It, ct)|ct)≤

∂dtJγ,t(It, q
∗
γ,t(It, ct), d

∗
γ,t(It, ct)|ct). Therefore,

∂ItVγ̂,t(It|ct) =∂yΛ(It − d∗
γ̂,t(It, ct))+ ∂yΨγ̂,t(It + q∗γ̂,t(It, ct)− d∗

γ̂,t(It, ct)|ct)

=R′(d∗
γ̂,t(It, ct))− ∂dtJγ̂,t(It, q

∗
γ̂,t(It, ct), d

∗
γ̂,t(It, ct)|ct)

≥R′(d∗
γ,t(It, ct))− ∂dtJγ,t(It, q

∗
γ,t(It, ct), d

∗
γ,t(It, ct)|ct)

=∂yΛ(It − d∗
γ,t(It, ct))+ ∂yΨγ,t(It + q∗γ,t(It, ct)− d∗

γ,t(It, ct)|ct)

=∂ItVγ,t(It|ct).

Therefore, ∂ItVγ̂,t(It|ct)≥ ∂ItVγ,t(It|ct) for all It. This completes the induction and, thus, the proof of parts

(a) - (c).

Part (d) follows from analogous argument to the proof of Theorem 6. Hence, we omit its proof for brevity.

Q.E.D.

Numerical Studies

We now specify the transition probability matrices for the procurement cost processes in Sections 6.2 - 6.3,

and give a numerical example in which the optimal forward-buying quantity is not monotone in the current

procurement cost.

Transition Probability Matrix in Section 6.2

The transition probability matrix for the procurement cost process in Section 6.2, P , is given by:
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Pij =















































1/6, if i=0,20, |j− i| ≤ 5;

1/7, if i=1,19, |j− i| ≤ 5;

1/8, if i=2,18, |j− i| ≤ 5;

1/9, if i=3,17, |j− i| ≤ 5;

1/10, if i=4,16, |j− i| ≤ 5;

1/11, if 5≤ i≤ 15, |j− i| ≤ 5;

0, otherwise.

Transition Probability Matrices in Section 6.3

We use P , P̂ , and
ˆ̂
P to denote the transition probability matrix for {ct}, {ĉt}, and {ˆ̂ct}, respectively. Let

Pi, P̂i, and
ˆ̂
Pi denote the ith row vector of P , P̂ , and

ˆ̂
P .

For i=0,1,2,










Pi = (1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

P̂i = (1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

ˆ̂
Pi = (1

7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

For i=3,










Pi = (0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0,0,0,0,0,0,0,0),

P̂i = (1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0,0,0,0,0,0,0,0,0,0),

ˆ̂
Pi = (1

9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0,0,0,0,0,0,0,0,0,0).

For i=4,










Pi = (0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0,0,0,0,0,0,0),

P̂i = (0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0,0,0,0,0,0,0,0,0),

ˆ̂
Pi = ( 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
,0,0,0,0,0,0,0,0,0,0).

For i=5,










Pi = (0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0,0,0,0,0,0),

P̂i = (0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0,0,0,0,0,0,0,0),

ˆ̂
Pi = (0, 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
,0,0,0,0,0,0,0,0,0).

For i=6,7,8,










Pi = (0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0,0,0,0,0),

P̂i = (0,0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0,0,0,0,0,0,0),

ˆ̂
Pi = (0,0, 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
,0,0,0,0,0,0,0,0).

For i=9,










Pi = (0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0,0),

P̂i = (0,0,0,0,0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0,0,0,0),

ˆ̂
Pi = (0,0,0,0,0, 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
,0,0,0,0,0).

For i=10,










Pi = (0,0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0,0),

P̂i = (0,0,0,0,0,0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0,0,0),

ˆ̂
Pi = (0,0,0,0,0,0, 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
,0,0,0,0).

For i=11,










Pi = (0,0,0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0,0),

P̂i = (0,0,0,0,0,0,0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0,0),

ˆ̂
Pi = (0,0,0,0,0,0,0, 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
,0,0,0).
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For i=12,13,14,










Pi = (0,0,0,0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0,0),

P̂i = (0,0,0,0,0,0,0,0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0,0),

ˆ̂
Pi = (0,0,0,0,0,0,0,0, 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
,0,0).

For i=15,










Pi = (0,0,0,0,0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0,0),

P̂i = (0,0,0,0,0,0,0,0,0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0,0),

ˆ̂
Pi = (0,0,0,0,0,0,0,0,0, 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
,0).

For i=16,










Pi = (0,0,0,0,0,0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0,0),

P̂i = (0,0,0,0,0,0,0,0,0,0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
,0),

ˆ̂
Pi = (0,0,0,0,0,0,0,0,0,0, 1

11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
, 1
11
).

For i=17,










Pi = (0,0,0,0,0,0,0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
,0),

P̂i = (0,0,0,0,0,0,0,0,0,0,0,0, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
),

ˆ̂
Pi = (0,0,0,0,0,0,0,0,0,0,0,0, 1

9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
).

For i=18,19,20,










Pi = (0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
),

P̂i = (0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
),

ˆ̂
Pi = (0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1

7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
).

It’s clear from the entries of P , P̂ , and
ˆ̂
P that ˆ̂st(ct, ξt)≥cx ŝt(ct, ξt)≥cx st(ct, ξt) for each ct.

Non-Monotone Forward-Buying Quantities

In Theorem 6(c), we show that when the procurement cost grows more rapidly at a lower cost level (i.e.,

κt(ct) = αµt(ct)− ct is decreasing in ct) and the spot-purchasing and forward-buying channels are equally

costly (i.e., γ =1), the firm should order less through the forward-buying contract at a higher spot-purchasing

cost. In this subsection, we give a numerical example to illustrate that when the above conditions are violated,

there is no monotone relation between the optimal forward-buying quantities and the current procurement

cost. We use the same numerical setup as in Section 6.1, except that the backlogging and holding costs, and

spot market procurement cost processes are different. More specifically, in this example, the expected demand

is linear in price: d(pt) = a−kpt with market size a= 1 and price sensitivity k= 1. The random component of

Dt follows i.i.d. normal distributions with mean 0 and standard deviation σ = 0.2. The maximum expected

demand is d̄ = 0.8 and the minimum expected demand is d = 0.2. The holding cost is h = 0.05 and the

backlogging cost is b= 0.5. We set α= 0.99 and γ = 0.95. The planning horizon length is T = 2. We assume

that procurement cost is driven by a 5-state Markov chain given in Table 3.

We use P to denote the transition probability matrix of the cost process, where Pij is the probability that

the cost in the current period is cj given that the cost in the previous period is ci. Pij can be summarized

as follows:

Pij =











1/2, if i=0,4, |j− i| ≤ 1;

1/3, if i=1,2,3, |j− i| ≤ 1;

0, otherwise.
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Table 3 Procurement Cost States

t c0 c1 c2 c3 c4
1 0.15 0.35 0.40 0.60 1.00
2 0.20 0.30 0.40 0.50 0.60

Given the above model setup, it’s easy to see that κt(ct) is not decreasing in ct for t= 2. Figure 3 plots

the optimal forward-buying quantity for each procurement cost in period 2, qt(ct), which is not monotone in

the current spot market procurement cost ct.
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Figure 3 Optimal Forward-Buying Quantity
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